THE STRUCTURE OF GUMMADIOL - A LIGNAN HEMI-ACETAL

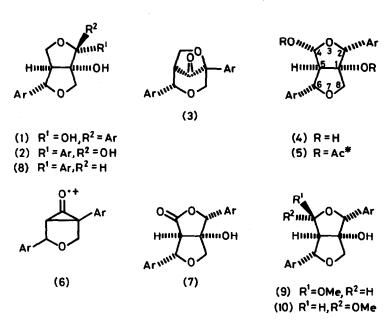
By A.S.R.Anjaneyulu, A. Madhusudhana Rao, V. Kameswara Rao, and L. Ramachandra Row^{*}

(Department of Chemistry, Andhra University, Waltair, India), and Andrew Pelter^{*} and Robert S. Ward,

(Department of Chemistry, University College of Swansea, Singleton Park,

Swansea SA2 8PP).

(Received in UK 2 April 1975; accepted for publication 16 April 1975) Summary


Gummadiol, a new lignan from Gmelina arborea, is shown to be 1,4-dihydroxy-2,6dipiperonyl-3,7-dioxabicyclo-[3,3,0]-octane, the first member of a new series of dihydroxy lignans.

We have recently reported the isolation from <u>Gmelina arborea</u> of the new lignans arboreol (1) and isoarboreol (2) which are stereoisomeric 1, 2-dihydroxy-2, 6-dipiperonyl-3, 7-dioxabicyclo-[3, 3, 0]-octanes, together with gmelanone (3) which may be formally derived from (1) and/or (2) by pinacolic rearrangement.^{1, 2} We now report the isolation, from the same source, of gummadiol (4), a structural isomer of the arboreols.

Gummadiol, $C_{20}H_{18}O_8$, m.p. 130° , $[a]_D + 32^\circ$, has two hydroxyl groups (ν_{OH} 3580, 3400 cm⁻¹) and gave a diacetate (5), $C_{24}H_{22}O_{10}$, m.p. 140° , $[a]_D + 31^\circ$. In the mass spectrum the ions at <u>m/e</u> 338 and 161, characteristic of the arboreols, were of low intensity (1% and 3% respectively). We have previously suggested that the peak at <u>m/e</u> 338 has structure (6) arising by rearrangement of arboreol to gmelanone followed by loss of formaldehyde.² Thus gummadiol should lack the 1, 2-dihydroxy grouping characteristic of the arboreols, a suggestion confirmed in that unlike the arboreols, gummadiol did not undergo cleavage with periodate. The fact that the peak at <u>m/e</u> 161 (Ar CH=CH \dot{CH}_2) was of little significance and that it was replaced by a peak at <u>m/e</u> 176 (Ar CH=CH CHO), relative intensity 88%, suggested that there was an oxygen at C-4.

The ¹H n.m.r. spectra (Table 1) and also the ¹³C n.m.r. spectra (Table 2) showed that gummadiol did in fact contain the 3, 7-dioxabicyclo-[3, 3, 0]-octane skeleton and confirmed the structure (4). As in gmelinol and related compounds the H-8 protons each gave rise to a simple doublet, indicating that there was no hydrogen atom at C-1. The position of C-1 in the ¹³C spectrum was at 91.99 p.p.m., closely similar to gmelinol, paulownin and the arboreols.² Thus a hydroxyl group is attached at C-1. The H-5 proton

Ar = 3,4 - Methylenedioxyphenyl. *The stereochemistry at C-4 not defined in this compound.

clearly seen at high field, was coupled to H-6 (J, 6 Hz) and also to one other proton (J, 2 Hz) at the atypical τ value of 4.85. It was almost certain therefore that the other hydroxyl group was attached to C-4, an inference verified both by the shift downfield of 1.11 p.p.m. of this proton in the diacetate (5) and by the fact that C-4 is at 96.47 p.p.m. as compared with 71.58 p.p.m. in paulownin (8). The rest of the ¹H and ¹³C n.m.r. spectra were in complete accord with the assigned structures.

When gummadiol was oxidised with either Jones' reagent or CrO_3/AcOH only piperonylic acid was isolated. However $\text{CrO}_3/\text{pyridine}$ gave as the major product the γ -lactone (7), $\text{C}_{20}\text{H}_{16}\text{O}_8$, m.p. 157°, ν_{OH} 3500 cm⁻¹, ν_{CO} 1770 cm⁻¹. The ¹H n.m.r. spectrum of this compound was simple and in agreement with structure (7). The peak assigned to C-4 in the ¹³C n.m.r. spectrum now appeared at 174.90 p.p.m.

That one hydroxyl group in gummadiol was that of a hemi-acetal was clear in that when gummadiol was treated at room temperature with methanol containing a few drops of conc. hydrochloric acid a monomethyl ether (9), m.p. 176° , $[a]_{D}$ - 22.5^o was produced.

Proton	Gummadiol (5) (CDCl ₃)	Diacetate (6) (CDCl ₃)	γ-Lactone (7) (d ₆ -DMSO)
2	4.86 s	4.63 s	4.4 6 B
4	4.85 d (2)	3.74 d (2)	-
5	7.15 dd (2, 6)	6.65 dd (2, 6)	6.64 d (5)
6	5.15 d (6)	5.02 d (6)	4.88 d (5)
8a.	6.08 d (10)	5.72 d (10)	6.04 d (10)
8e	5.96 d (10)	5.48 d (10)	5.92 d (10)
осн,0	4.12 s, 4.14 s	4.09 s, 4.10 s	4.01 s
arom.	3.0 - 3.4 m	3.0 - 3.4 m	3.0 - 3.3 m
он	8.3 s	• ´	4.92 в
осос <u>н</u> 3	-	7.94, 8.30	-

Table 1

¹H n.m.r. spectra^K of gummadiol and derivatives.

^M Values are given in τ , coupling constants (Hz) in brackets.

All assignments are supported by appropriate spin decoupling experiments and correct integration.

Table 2

¹³C n.m.r. spectra ϕ of paulownin, gummadiol and derivatives.

Carbon	Paulownin (8) (CDC1 ₃)	Gummadiol (5) (CDCl ₃)	Diacetate (6) (CDCl ₃)	γ-Lactone (7) (d ₆ -DMSO)
1	91.74	91.99	94.63	86.20
2	87.48	88,00	88.79	85.58
4	71.58	96.47	100.20	174.90
5	60.58	64.92	64.70	58,79
6	85,88	83.39	83.67	82.63
8	74.98	75.10	75.81	77.20

ø

Signals due to aromatic, OCH₂O, and COCH₃ groups are not included. Measurements are given as p.p.m. downfield from TMS as internal standard at zero. All assignments are supported by off-resonance decoupling experiments. The same reaction at reflux gave a different monomethyl ether, m. p. 182° , $[\alpha]_{D} + 36^{\circ}$, this presumably being the thermodynamically more stable product (10), with the alkoxyl group equatorial. The $[\alpha]_{D}$ of (9) compares favourably with that of gummadiol which therefore has the same stereochemistry.

The C-2 aryl group of gummadiol is clearly equatorial, since the H-8 protons come below 6.2 τ in the ¹H n.m.r. spectrum, as in eudesmin, gmelinol, etc. ^{3,4} The configuration at C-6 is less clear but so far all the lignans isolated from <u>G.arborea</u> have an equatorial aryl group at this position and the $[\alpha]_D$ of gummadiol would fit in very well with this assignment. The large positive rotation associated with an axial aryl group at C-6, as in gmelinol, is not exhibited by gummadiol and therefore the structure (4) with the stereochemistry shown is tentatively assigned to this compound. It is hoped that a thorough c.d. examination of 2, 6-diaryl-3, 7-dioxabicyclo-[3, 3, 0]-octane lignans will establish firm criteria for the determination of the absolute configuration at all centres.

Acknowledgement.

Two of us (A.M.R. and V.K.R.) wish to express their grateful thanks to C.S.I.R., New Delhi, India, for financial assistance.

References

- L. Ramachandra Row, K. Jaganmohan Rao, V. Kameswara Rao, A. Pelter, and R.S. Ward, Chem. Comm., 476 (1974).
- A.S.R.Anjaneyulu, K.Jaganmohan Rao, V.Kameswara Rao, L.Ramachandra Row,
 C.Subrahmanyam, A.Pelter, and R.S.Ward, <u>Tetrahedron</u>, in press.
- 3. A.J.Birch, P.L. Macdonald, and A. Pelter, J. Chem. Soc. (C), 1968 (1967).
- 4. C.K. Atal, K.L. Dhar, and A. Pelter, J. Chem. Soc. (C), 2228 (1967).